skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Filip, Marina R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Single-crystal layered perovskite heterostructures provide a scalable platform for potentially realizing emergent properties recently seen in mechanically stacked monolayers. We report two new layered perovskite heterostructures M2(PbCl2)(AMCHC)2(PbCl4)·2H2O (1_M where M = Na+, Li+; AMCHC = +NH3CH2C6H10COO‒) crystallizing in the chiral, polar space group C2. The heterostructures exhibit alternating layers of a lead-chloride perovskite and an intergrowth comprising corner-sharing PbCl4(η2-COO)2 polyhedra with bridging equatorial chlorides and terminal axial oxygen ligands. Small alkali metal cations and water molecules occupy the cavities between the polyhedra in the intergrowth layer. The heterostructures display wide bandgaps and two closely spaced excitonic features in their optical spectra and strong second harmonic generation. The calculated band structure of 1_Na features a Type-I quantum-well structure, where the electron-hole correlation function corresponding to the lowest excited state points to electron-hole pairs localized within a single inorganic layer (intralayer excitons), as seen in typical layered halide perovskites. In contrast, calculations show that 1_Li adopts a Type II quantum-well structure, with electrons and holes in the lowest-excited state residing in different inorganic layers (interlayer excitons). Calculations on model complexes suggest that these changes in band alignment, between Type-I and Type-II quantum-well structures, are driven by the placement of the alkali metal and the orientation of the water molecules changing the electrostatic potential-energy profiles of the heterostructures. Thus, this study sets the stage for accessing different alignments of the perovskite and intergrowth bands in bulk perovskite heterostructures that self-assemble in solution. 
    more » « less
    Free, publicly-accessible full text available November 5, 2026
  2. The properties of excitons, or correlated electron–hole pairs, are of paramount importance to optoelectronic applications of materials. A central component of exciton physics is the electron–hole interaction, which is commonly treated as screened solely by electrons within a material. However, nuclear motion can screen this Coulomb interaction as well, with several recent studies developing model approaches for approximating the phonon screening of excitonic properties. While these model approaches tend to improve agreement with experiment, they rely on several approximations that restrict their applicability to a wide range of materials, and thus far they have neglected the effect of finite temperatures. Here, we develop a fully first-principles, parameter-free approach to compute the temperature-dependent effects of phonon screening within the ab initio GW -Bethe–Salpeter equation framework. We recover previously proposed models of phonon screening as well-defined limits of our general framework, and discuss their validity by comparing them against our first-principles results. We develop an efficient computational workflow and apply it to a diverse set of semiconductors, specifically AlN, CdS, GaN, MgO, and SrTiO 3 . We demonstrate under different physical scenarios how excitons may be screened by multiple polar optical or acoustic phonons, how their binding energies can exhibit strong temperature dependence, and the ultrafast timescales on which they dissociate into free electron–hole pairs. 
    more » « less
  3. null (Ed.)
    Accurate prediction of fundamental band gaps of crystalline solid-state systems entirely within density functional theory is a long-standing challenge. Here, we present a simple and inexpensive method that achieves this by means of nonempirical optimal tuning of the parameters of a screened range-separated hybrid functional. The tuning involves the enforcement of an ansatz that generalizes the ionization potential theorem to the removal of an electron from an occupied state described by a localized Wannier function in a modestly sized supercell calculation. The method is benchmarked against experiment for a set of systems ranging from narrow band-gap semiconductors to large band-gap insulators, spanning a range of fundamental band gaps from 0.2 to 14.2 electronvolts (eV), and is found to yield quantitative accuracy across the board, with a mean absolute error of ∼0.1 eV and a maximal error of ∼0.2 eV. 
    more » « less